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ABSTRACT

Strong intermolecular forces such as hydrogen bonds between repeating
units of polymer molecules cause association of polymer chains and affect
the phase behaviour of polymer-polymer mixtures . In this work, the phase
behaviour and miscibility regions of hydrogen bonded polymer mixtures are
calculated by a new model based on the lattice fluid theory of mixtures . In this
model, the compressibility or free volume effect of the mixture which is
originated from empty lattice sites is considered by introducing a new correla-

tion for the number of vacant sites . The spinodal curves are calculated for

the mixtures and it is shown that as expected from the theory, higher
compressibility causes lower stability and consequently the phase separation.
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INTRODUCTION

Polymer mixtures are frequently immiscible . This is

because, for the mixing of high molecular weight
macromolecules the combinatorial entropy contribu-
tion is very small. On the other hand, the enthalpy of
mixing is primarily dependent on the energy change

associated with changes in nearest neighbour contacts

during mixing and is much less dependent on
molecular lengths . Hence, the free energy of mixing is
dominated by enthalpic term [l] . If the only inter-

molecular interactions in the mixture are van der
Waals or London dispersion forces the enthalpic term

will be positive and, therefore, the Gibbs free energy

of mixing will be positive too [2, 3].

To promote miscibility, strong interactions
must be introduced among the molecules of the mix-

ture. The most important of these interactions is
hydrogen bonding between polymer molecules.

Presence of hydrogen bonding interactions
causes exothermic effects in the mixing and makes

the Gibbs free energy of mixing negative . Therefore,

miscibility occurs and the mixture components are
said to be compatible.

Another phenomena which reveals its effect on

miscibility or phase stability of polymer mixtures is
free volume or mixture compressibility . It is thought

that appearance of LCST (lower critical solution
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temperature) or thermal induced phase separation in
hydrogen bonded polymer mixtures is due to free
volume [4].

Prediction of thermodynamic properties of
hydrogen bonded polymer mixtures and their phase
behaviour is an interesting subject for poiymef
researchers . One of the most effective methods in
statistical thermodynamics for studying the phase
behaviour of polymer mixtures is the lattice fluid
theory of mixtures . In this field at first, Painter et al.
[5] adopted the well known Flory-Huggins model for
including the hydrogen bonding contribution in
polymer miscibility. To do this they employed an
additional term in the Flory-Huggins' Gibbs free
energy expression of mixing that takes into account
the effect of hydrogen bonding. To predict the distri-
bution of hydrogen bonded chains in the mixture, they
used the concept of association and equilibrium
constants which have been determined by spectros-
copic measurements . In their initial model, they had
assumed that the size of a repeating unit of polymer
chains was equal to an interacting unit . In the
extension of their model Painter et al . [6] showed that
this assumption was not necessary any more. Graf et
al . [7], presented a new model which utilized the
Sanchez and Lacombe [2, 3 and 8] lattice fluid theory
of polymer mixtures.

The equilibrium constants for predicting the
distribution of hydrogen bonded chains also were
used and by deriving a relation for the partition
function of the mixture the Gibbs free energy of
mixing was calculated.

On the other hand Panayiotou and Sanchez [9]
presented a model for hydrogen bonding in fluids,
using the equation of state approach . This model
divides the intermolecular forces into two contribu-
tions which are physical (dispersion) and chemical
(hydrogen bonding) forces. The physical forces are
calculated based on the lattice theory of fluid
mixtures, and the chemical interactions are taken into
account with the aid of calculating the number of
hydrogen bonds among the molecules.

All of above models for studying phase stability
of polymer mixtures can be categorized into two main

models, namely "regular lattice model" and "equation
of state model" . For the case when there is no vacant
site in the lattice the model is called "regular lattice
model", and when vacant sites are present it is called
"equation of state model" . Here we have presented a
developed approach which covers both of them.

Commonly, in all above mentioned models, for
introducing the effect of free volume in spinodal
calculations it is needed to obtain an equation of state
for the mixture. Solving the equation of state is
accompanied with the problem of obtaining mixture
characteristic values such as hard core density (the
density of mixture at closed packed state), closed
packed lattice cell volume and so on . Unfortunately
these values are not available in many cases for
polymer mixtures . In present paper, based on the
lattice fluid mixtures theory, this problem has been
overcome by introducing a relation for the number of
vacant sites in the lattice. Using this relation, it is not
necessary to solve equation of state and with the aid
of a straightforward path for calculating the reduced
volume (the ratio of mixture volume to closed packed
lattice volume of mixture), miscibility regions and
spinodal curves are obtained for hydrogen bonded
polymer mixtures.

MODEL DESCRIPTION

Consider a mixture of polymer molecules . The num-
ber of "i"th component molecules is N, and each
molecule consists S, segments (S,-mer), at temperature
T and pressure P . Assume M, is the degree of poly-
merization of component "i", thus n,, the total number
of "i"th component repeating unit is equal to !AN, . In
lattice theory it is assumed that all molecules are
arranged on a lattice of n, sites, n, of which are empty.
Total number of lattice sites which occupied with
"i"th component segments are S; N ,, and the total
number of lattice sites are:

i-n

n.,=E,S,N,+n,

	

(1)
i-I

The site fraction of component "i", f, , is defined as:

34

	

Iranian Polymer Journal / Volume 7 Number 1 (1998)



Taimoori M. ct al.

S, N,
(2)f; =

and the vacant site fraction :

(3)f=
2S,
r—f

interact . The interaction energy of a mer of type "i"
when surrounded by mers of type 1" is equal to e,.
Therefor, total interaction energy of the system is:

E = (L S , N ,,)(2Ej

	

(8)

The volume of the mixture can be obtained by
multiplying the total number of lattice sites, no, into
lattice cell volume, v* (the average closed packed
volume per segment in the mixture), thus:

The volume fraction of "i"th component, on the other
hand can be obtained by the following relation: V = ( S, N, )v*

	

(9)

In order to proceed further, the total number of con-
figurations available to our system must be calculated.
According to the Flory's [10] combinatorial express-
ion for the number of configurations, the partition
function in its maximum term approximation may be
written as [2, 8, I 1]:

(5 )P) _

	

w
) . . .(D

.

	

EkTVQ(T,

	

(
f

)fl` (f

	

)N" exp[-

	

]

(6)=--7—7

where k is the Boltzman constant, E and V are the
total energy and volume of mixture, respectively, a,
is a symmetry number and 4, is a flexibility parameter
characteristic of component "i", and to, may be
recognized to be the number of configurations avail-
able to an S ; mer in the closed packed pure state [10].

From statistical thermodynamics Gibbs free
energy of the mixture is expressed as [12]:

G = -kT InQ(T,P)

	

(7)

As it is seen from eqns (6) and (7), the total energy
and volume of mixture must be calculated for obtain-
ing the Gibbs free energy of mixture . For calculating
E, we assume that only the nearest neighbours

In this work we have considered binary systems
where one of the polymers can self-associate through
intermolecular hydrogen bonding . The other polymer
is assumed to be unassociated but is capable of
association with the first, again, through hydrogen
bonding . The unassociative component is represented
by the symbol "A" and the self-associative one by
« B „

Writing eqns (5), (8) and (9) for these binary
mixtures and substituting in eqn (7) gives the Gibbs
free energy of mixture:

=kT[n„ln(m~)+n,ln(--) +n„ 1n (1 -p)+

(n,, +n„)Inp]+n,v*(-pP*+ f)+kT[nln(cp S )+

EnA,ln(9,,SB ) + Ena,ln((Pa	 SB P s ) -

kT[njn(cp ,,s) + naln(pa SB }] + k T[(na - En a,)[ 1 -

ln(z - 1)] + En,,lna]

	

(10)

where p is the reduced density of mixture and n,,, is
the number average length of a polymer chain and z is
the co-ordination number of the lattice.

In a binary polymer mixture the stability condi-
tion may be defined by the following eqn [13]:

d ' AG'"/dp; > 0

	

(11)

where aGd, is the Gibbs free energy of mixing of two
polymers . This inequality define the spinodal in the

p . = (4)
S, N,

n.
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phase diagram . The spinodal separates the metastable
region from the two phase unstable region.

If eqn (II) is written for self-associating
component "B" and variation of AG, ;, with density is
taken into account it can be shown that the following
equation will hold [141:

d'AG — = a'AG"` +	 a'AG"' dp =	 a'AG-
dp

	

a(PeaP dup .

	

at a

[	 a'AG'"  ,[	 a'AG — 1 ,
N ap

	

aP

At low pressures the following equation is also true
[15):

ap

	

(13)

where x, is the isothermal compressibility.
Thus it is seen from eqns (11) , (12), and (13) that
the mixture's isothermal compressibility x., should
have the reverse effect on the phase stability . This is
because the higher compressibility of mixture causes
the second term in the right hand side of eqn (12) to
be , larger (with minus sign) and consequently causes a
more decrease in the left hand side of eqn (12).

In phase stability studies eqn (12) must be used.
In this equation the second derivative of the Gibbs
free energy of mixing is needed . The Gibbs free
energy of mixing is obtained as:

AG„„ = G,." _ — G ,,,,,,, — G .~e

	

( 14 )

The values of 0	 A and G,,,„„ can be obtained from eqn
(1 I) for 4„ = 1 and 4, = I, respectively . The resulted
equations have been derived by Graf et al . [71 and
presented in the Appendix.

As it is seen from eqns A(1) to A(3) in the
Appendix, for phase stability calculations the reduced
density, or reduced volume, e, of mixture is
needed.

Obtaining reduced volume or reduced density
of mixture requires an appropriate equation of state
for the mixture, and some experimental data such as
hard core density and closed packed volume of mix-

ture as a function of volume fraction of components.
Unfortunately, these values are not available for
polymer mixtures . To overcome this problem in this
work we present a new approach in calculating the
Gibbs free energy of mixture which does not need
application of an equation of state.

The reduced volume of the mixture is defined

- as the ratio of mixture volume to closed packed lattice
volume. Using eqn (9) the reduced volume of mixture
for a two component system can be written as
follows :

- V	 n,,
S o +n os e +n.

v

	

=

	

p V

	

nS + r►aSo

For calculating reduced volume , we need the total
number of vacant sites, n., and the number of
segments for repeating units of polymer chains, S, , in
the mixture. It is impossible to calculate directly S i
because the hard core density and closed packed
lattice cell volume for the mixture are not available.
Thus, at first we calculate the number of segments for
a repeating unit of each polymer component in pure
state, S . by using the following equation:

S . = M"`
v,p,

where M_, is the molecular weight, and p is the hard
core density of component "i" in pure state . Then we
can calculate the number of segments for repeating
units of each polymer component , S ;, in a mixture by
assuming that the number of segments per lattice cell
volume in pure state S; /v` and in mixture Si Iv` remain
the same i.e:

S,

	

S,
V

	

V

In the above equation we define the lattice cell
volume v ' as follows:

V Ny +1PoV it

For a two component system we propose the follow-
ing equation for calculating, n„ the number of vacant
sites:

(12)

(16)

(17)

36

	

Iranian Polymer Journal / Volume 7 Number 1 (1998)



Taimoon M. el al

n,_(1 —+n"J

	

(19)

where K. is an adjustable parameter and n,,, are
the number of vacant sites of the polymers in the pure
state . The number of vacant sites in the mixture n, is
proportional to the sum of vacant sites in pure
components . When K,= 0 this number is equal to the
sum of pure component vacant sites. This equation is
general enough to cover all the possible cases of

variation of the number of polymer mixture vacant
sites due to mixing . From eqn (14) for the pure
components "A" and "B" we have:

v =

	

= n"S " + n,,, , = 1 =	 n,, S , + n.,,

	

(20)"

	

P.

	

NS,

	

P.

	

n, S ,

Then by substituting for n,, , n , in eqn (19) the
following equation is obtained:

n, = (1 —

	

P.
▪

+ n" P"• — n,, S ,, — n"S „)

	

(21 )

where p„ = It i,, and p,, = i/ v" are the pure component
reduced densities.

CALCULATIONS

For phase stability calculations we proceed according
to the following steps:
(I) Hard core densities for pure components are
calculated from the following relation:

'

	

M a ,
P =

where M, ; is the "i"th component molecular weight
and V, is the molar volume at absolute zero tempera-
ture . Values of V,'' are obtained from reference 16.
(2) Characteristic pressure values, P!, are obtained
from solubility parameter according to eqn A(4) in the
Appendix. All of required values for are given in
reference 7.
(3)The number of segments of each molecule in pure
state, So„ and in the mixture, S,, are calculated from
eqns (16), (17), respectively . Values of lattice cell

volume for pure components, v ;, are given in
reference [8].
(4) For calculating reduced volume or reduced density
of mixture, we use our proposed relation for the
number of vacant sites, n,, eqn (22) joined with eqn
(15).

Using the above algorithm, and substituting
eqns A(1) to A(3) in eqn (12), we calculate spinodal
curves for the mixture of poly vinylphenol (PVPh) as
the self-associative component and poly hexylmeth-
acrylate (PHM), in temperature range of 220— 670 K
and for the molecular weights varying from 50 to
20 .0x10' for both components.

RESULTS AND DISCUSSION

The results of calculations for the degree of polymer-
ization equal to 500 and K,,= 0 and 1 for the mixture
of PVPh and PHM are shown in Figure 1 . As it is
seen from Figure 1 the addition of vacant sites (K,
going from 1 to 0) will expand the instability region.
This behaviour is consistent with the understanding
that the mixture compressibility destabilizes the
mixture and promotes phase separation [14] . This is
indicative of the fact that our proposed approach
shows a significant quantitative advantage in predict-
ing the phase behaviour of hydrogen bonding polymer
blends relative to regular lattice model . It should be
noted that for the spinodal calculation of regular
lattice model there is no vacant sites in the mixture(n,
= 0 or K, = 1) and thus p = 1 and:

a'AG"'__	 a ' AG°'  = 0
&(p,030	d p'

The results of calculations for various cases of K.(1,
0.5, 0, -1) are represented in Figure 2 . It is seen that
LCST (lower critical solution temperature), UCST
(upper critical solution temperature) and immiscibility
loops are calculated successfully. According to the
basic relations of thermodynamics (eqns . (12) and
(13) of this paper) it has been proved that considering
the compressibility must destabilize the mixture and
lead to phase separation. In Figure 2 the curves
assigned by K . = 1 present the results of regular

(22) (23)
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Figure 1 . Spinodal curves for poly hexylmethacrylate (PHM)

and poly vinylphenok (PVPh) with degree of polymerization

equal to 500.

lattice model, where the reduced density is constant

and equal to unity . When K„ * 1 it means that there

are some vacant sites in the mixture and the resulting
curves belong to the equation of state model.

Decreasing K„ (or increasing free volume)
causes further and further phase separation . As it is

expected, the new approach presented in this paper

Figure 3. The contact point of zero axis and T=353 K is one

point of spinodel curve.

can give a quantitative criterion for the tendency of
components to create a homogeneous phase.

The Effect of Temperature
In Figure 3 we present the variation of the second
derivative of the Gibbs free energy of mixing for

various temperatures . As it is seen from Figure 3

when the second derivative of the Gibbs free energy
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Figure 2 . The effect of number of lattice vacant sites on

phase stability of PHM and PVPh mixture . Figure 4. UCST of PHM and PVPh mixture.
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Figure 5 . The effect of degree of polymerization on phase
stability of PHM and PVPh mixture.

versus volume fraction at a given temperature is equal
to zero, we obtain one point of spinodal phase
diagram. For the particular temperature of T'353 K
on Figure 3 the second derivative of the Gibbs free
energy curve is tangent to zero line . This temperature
is the LCST of mixture because above this tempera-
ture phase separation begines . In order to demonstrate
the UCST of the PVPh and PHM mixture by the new
presented approach we report Figure 4 for various
other temperatures . According to this figure the
UCST of PVPh and PHM mixture is 323 K.

The Effect of Degree of Polymerization
For the mixture of PVPh and PHM we calculate the
spinodal phase diagrams for various . degrees of
polymerization, M„ equal to 50, 500, 20.Ox 10' . The
results of this calculation are presented in Figure 5.
Increasing the degree of polymerization means longer
polymer chain lengths . This reduces the molecular
motions and promotes entanglement of the long
chains . Thus it is expected that increasing the degree
of polymerization, causes less compatibility of
components and increases two phase region area . The
resulted spinodal curves confirm this phenomenon
although it is seen that higher degrees of polymer-
ization, (M, > 500), have little effect on phase stability
region change .

CONCLUSION

The new theoretical model which has been presented
and used in this paper, can clearly answer the
question of "how the compressibility and association

' phenomena dominate the hydrogen bonded polymer
mixtures phase behaviour".

Introducing the adjustable parameter in eqn (8)
enable the model to predict successfully the lower and
upper critical solution temperature (LCST and UCST)
and closed loop curves in spinodal diagrams. The
approach used in calculating reduced volume and
density of mixture made the spinodal calculations
independent of the application of equation of state.
Considering untractable behaviour of polymer-
polymer mixtures reveals the surprising ability of this
model for formulating the spinodal calculations and
therefore, predicting phase behaviour of hydrogen
bonded polymer mixtures.

APPENDIX

For calculation of second derivative of Gibbs free
energy of mixing with respect to volume fraction of
self-associative component the following equations is
used [7]:

AGd [
▪ T ]

• r

	

+ M1((//,, – 2pS RT Ap +MA(PA

	

Bl,

2[ –I + I ][ SM1 — su
]+

Sn [ S A _ Sts ]a +
rM. M. SA S~

	

s S.

	

5„

	

a rAl +
J

	

"T,~,,ill —

	

+ -.--] +
[ r (TAI &p .

	

9X .

	

a(Ps

	

[ r (PA

	

ns'YI,

2[1–n„][S„– S0] + NII[ 1–
n

l[SA –	] '

al _• ]
— 2— 1

ap'

	

• p 1–p

	

pS
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p:= (fi r, – NcT1) + P' [ a
P

' ]

	

A(2)

AG"'

a[aP ]
	 -

RT LP Ps+P(q)(Pa)AP]+

S tS –
se][ ln(1–p) +1]+ ti[—I +

p 5

	

Sr

	

P

	

P r' M,

1—r]

n a,

where r, and I', are the fraction of self-associative
component repeating units which have not hydrogen
bond in pure state and in the mixture respectively, r `
is equal to S " I S °, and P ; is the "i"th component
characteristic pressure defined by the following
equation:

where S; is the solubility parameter of component i
and ne, is the number average length of a polymer
chain.
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